PREPARATION OF ¹³C AND ¹⁵N LABELED BELLENAMINE AND ITS DEGRADATION PRODUCTS[†]

YOKO IKEDA, HIROSHI NAGANAWA, SHINICHI KONDO* and TOMIO TAKEUCHI

Institute of Microbial Chemistry 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

(Received for publication July 6, 1992)

A streptomyces metabolite, bellenamine, has been converted into D- β -lysinamide and cyclized bellenamine in an acidic solution at 75°C. The structure of the new cyclized compound was assigned as (*R*)-6-(3-aminopropyl)-1,3-diazacyclohexan-4-one by spectral analyses. $[1^{-13}C, Amide, 1'^{-15}N_2]$ bellenamine, which has been isolated from the culture by feeding both L- $[1^{-13}C]$ lysine and $[1^{5}NH_4]_2SO_4$ to a synthetic medium, was degraded under acidic condition to obtain the stable isotope labeled D- β -lysine, D- β -lysinamide and cyclized bellenamine. These labeled compounds were analyzed by ^{13}C and ^{15}N NMR spectra, and will be used for the biosynthetic study on bellenamine.

A biogenic amine, bellenamine $(D-\beta-lysylmethanediamine)$, having unique structure and biological activities, was isolated from the culture filtrate of *Streptomyces nashvillensis* MD743-GF4.¹⁾ The open-chain aldoaminal structure and the $D-\beta$ -lysine moiety first ever found in a natural product were reported before.¹⁾ The absolute structure, (*R*)-*N*-aminomethyl-3,6-diaminohexanamide (Fig. 1), was confirmed by total synthesis.²⁾ Bellenamine weakly inhibits growth of some Gram-positive bacteria¹⁾ and strongly combats infection by the human immunodeficiency virus (HIV).³⁾

In this paper, the preparation of some degradation products of bellenamine and their stable isotope labeled compounds are reported.

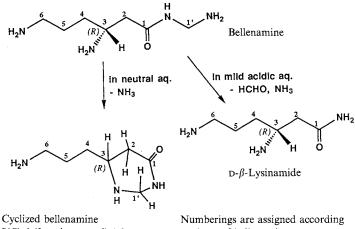
Preparation and Structures of Degradation Products

Bellenamine (2 mg/ml) in aqueous solutions at pH 3.7, 7.2 and 10.6 was stable in the cold room at

Day		pH 10.6		pH 7.2		pH 3.7	
	Compound (µg/ml) ^a	7°C	37°C	7°C	37°C	7°C	37°C
0	Bellenamine	2,000	2,000	1,880	1,880	1,900	1,900
7	Bellenamine	2,060	1,660	1,980	940	1,840	980
	Cyclized compound	< 50	60	< 50	600	< 50	250
	$D-\beta$ -Lysinamide	< 50	150	< 50	nd	< 50	880
14	Bellenamine	1,940	1,160	1,960	80	1,980	220
	Cyclized compound	< 50	400	< 50	1,600	< 50	420
	D- β -Lysinamide	< 50	nd	< 50	nd	< 50	1,560
21	Bellenamine	2,000	660	1,940	80	1,900	80
	Cyclized compound	< 50	660	< 50	1,910	< 50	410
	$D-\beta$ -Lysinamide	< 50	nd	< 50	nd	< 50	1,790

Table 1. Stability of bellenamine in aqueous solution $(2,000 \,\mu g/ml)$.

^a Compounds were determined by HPLC analysis.


nd: Not detectable.

[†] Dedicated to the late Professor HAMAO UMEZAWA on the occasion of the 30th anniversary of the Institute of Microbial Chemistry.

7°C for 3 weeks, but unstable at 37°C as shown in Table 1. HPLC analysis showed that bellenamine was converted into a new cyclized compound at pH 7.2 and mainly into $D-\beta$ -lysinamide at pH 3.7. These degradation products have been isolated from the hydrolysate of bellenamine in an acidic solution (pH 3.6) at 75°C for 8 hours. D- β -Lysinamide was also found in the culture broth as a minor component.⁴⁾

The cyclized compound was formed by deamination of 1'-NH₂ from bellenamine in a neutral aqueous solution with heating (Fig. 1). Since 3-NH in the cyclized compound derived from [1-13C, amide, 1'-

Fig. 1. Formation of D- β -lysinamide and cyclized bellenamine from bellenamine.

[(R)-6-(3-aminopropyl)-1,3diazacyclohexan-4-one]

to those of bellenamine.

 13 C NMR spectra of stable isotope labeled compounds in D₂O (pD 4.0). Table 2.

	[1- ¹³ C, Amide, 1'- ¹⁵ N ₂]bellenamine			D-[1- ¹³ C, <i>Amide</i> - ¹⁵ N]β-lysinamide			
Carbon	δ (ppm) Relative intensity (%)		J (Hz)	δ (ppm)	Relative intensity (%)	J (Hz)	
C-1	173.91 d	100	$J_{\rm CN} = 13.7$	175.40 d	100	$J_{\rm CN} = 16.8$	
C-3	48.81	1.6		49.20	2.0		
C-1′	46.02 dd	2.6	$J_{\rm CN} = 6.1, 12.2$				
C-6	39.75	1.9	·-·	39.86	2.0		
C-2	36,98 dd	2.5	$J_{\rm CN} = 7.6$ $J_{\rm CC} = 48.8$	36.80 dd	2.5	$J_{\rm CN} = 7.6$ $J_{\rm CC} = 47.3$	
C-4	29.90 d	3.1	$J_{\rm CC} = 3.1$	29.97 d	2.0	$J_{\rm CC} = 3$	
C-6	23.73	2.9		23.80	3.3		
	[1- ¹³ C, Amide- ¹⁵ N]cyclized bellenamine			D-[1- ¹³ C] β -lysine			
Carbon	δ (ppm)	Relative intensity (%)	J (Hz)	δ (ppm)	Relative intensity (%)	J (Hz)	
C-1	174.14 d	100	$J_{\rm CN} = 15.9$	176.87	100		
~ ~		2.0		49.17	4.2		
C-3	51.48	2.0		12.17	=		
C-3 C-1'	51.48 57.05 d	2.0 2.7	$J_{\rm CN} = 7.3$	17.17			
			$J_{\rm CN} = 7.3$	39.76	3.2		
C-1′	57.05 d	2.7	$J_{\rm CN} = 7.3$ $J_{\rm CC} = 46.4$			$J_{\rm CC} = 53.4$	
C-1' C-6	57.05 d 40.12	2.7 2.3	••••	39.76	3.2	$J_{\rm CC} = 53.4$ $J_{\rm CC} = 3$	

Nitrogen	[1- ¹³ C, <i>Amide</i> ,1'- ¹⁵ N ₂]- bellenamine		D-[1- ¹³ C, <i>Amide</i> - ¹⁵ N]- β-lysinamide			[1- ¹³ C, <i>Amide</i> - ¹⁵ N]cyclized bellenamine			
	δ (ppm)	Relative intensity (%)	J (Hz)	δ (ppm)	Relative intensity (%)	J (Hz)	δ (ppm)	Relative intensity (%)	J (Hz)
CONH ¹³ CONH 3-NH ₂ 1'-NH ₂	-332.14 -333.64	21.0 100 12.6 90.2	$J_{\rm CN} = 13.7$	-261.46 -261.50 d -332.29	29.1 100 10.7	J _{CN} =15.3	-248.28 d -330.03	100 28.1	$J_{\rm CN} = 15.2$
6-NH ₂	-341.74	14.0		-341.93	10.9		-342.08	34.1	

Table 3. ¹⁵N NMR spectra of stable isotope labeled compounds in 10% D₂O (pD 4.0).

¹⁵N₂]bellenamine was not enriched with ¹⁵N, C-3 retained the configuration. On the NMR spectrum in a 1:1 mixture of pyridine- d_5 and D₂O, 3-H at δ 2.97 was coupling to 2-H at δ 2.32 with J=11 Hz and to another 2-H at δ 2.61 with J=4.4 Hz. NOE between 3-H and 1'-H (δ 4.38) was observed by NOE difference spectroscopy experiment. Therefore, the conformational structure of cyclized bellenamine was determined to be (*R*)-6-(3-aminopropyl)-1,3-diazacyclohexan-4-one, having a half-chair form with 3,1'-pseudodiaxial protons (Fig. 1). Although cyclized bellenamine does not show antibacterial activity, it may be an important compound for biological activities of bellenamine.

Preparation of ¹³C and ¹⁵N Labeled Compounds

Bellenamine was produced by strain MD743-GF4 in a synthetic medium consisting of D-galactose, dextrin, ammonium sulfate and calcium carbonate, and the productivity was improved by addition of L-lysine.⁴⁾ Stable isotopes of L-[1-¹³C]lysine and [¹⁵NH₄]₂SO₄ was highly incorporated into bellenamine, and [1-¹³C,*amide*,1'-¹⁵N₂]bellenamine was obtained. The multiply labeled bellenamine was degraded under mild acidic condition described above to obtain D-[1-¹³C,*amide*-¹⁵N] β -lysinamide, D-[1-¹³C,*amide*-¹⁵N] β -lysinamide, D-[1-¹³C,*amide*-¹⁵N] β -lysinamide and [1-¹³C] β -lysine. These ¹³C and ¹⁵N labeled compounds were analyzed by ¹³C and ¹⁵N NMR spectra (Tables 2 and 3). At C-4 of all 1-¹³C labeled compounds, small ¹³C-¹³C spin couplings (³J_{CC}= ~3 Hz) with 1-¹³C were observed (Table 2). D-[1-¹³C,*Amide*-¹⁵N] β -lysinamide was used for biosynthetic studies on bellenamine.⁵

Experimental

General

MP's were determined with an Electrothermal IA9100 digital melting point apparatus and were not corrected. MS were measured on a JEOL JMS-SX102 mass spectrometer in a FAB mode. IR spectra were taken on a Hitachi 260-10 spectrophotometer.

¹H, ¹³C and ¹⁵N NMR spectra were taken on a JEOL JNM-GX400 spectrometer. ¹H NMR spectra were recorded at 400 MHz in a 5 mm sample tube using D_2O (δ = 4.80) as an internal standard. ¹³C NMR spectra were recorded at 100 MHz with full proton decoupling in a 5 mm sample tube using dioxane (δ =67.4) as an internal standard. ¹⁵N NMR spectra were recorded at 40.5 MHz in 10 mm sample tube using NH₄¹⁵NO₃ (δ =0) as an external standard. ⁵

TLC was carried out on silica gel plates (E. Merck, Art. 5715) developed with $CHCl_3$ -MeOH-25% aq ammonia (2:2:1) and Rf values of ninhydrin-positive spots were calculated. High-voltage paper electrophoresis (HVPE) was performed on a CAMAG HVE system at 3,300 V for 10 minutes, using HCOOH-CH₃COOH-H₂O (25:75:900, pH 1.8) as an electrolyte solution and the relative mobilities (Rm) of ninhydrin-positive spots to alanine were calculated.⁶ HPLC was performed on a Waters 600E

system using Waters Optipak CE column $(3.9 \times 150 \text{ mm})$ with a guard column (Optipak CE, $3.9 \times 35 \text{ mm}$) at 15.0°C and a flow rate of 0.4 ml/minute. 0.36% HClO₄ (pH 1.5) was used as a mobile phase and UV absorbance was monitored at 200 nm.⁴) Retention times (Rt, minutes) were as follows, bellenamine: 11.7, D- β -lysinamide: 7.1 and cyclized bellenamine: 6.7.

Mild Acid Hydrolysis of Bellenamine

A solution (pH 3.6) of bellenamine (177.1 mg) in H_2O (13 ml) and 1 N HCl (2.4 ml) was heated at 75°C for 8 hours. After neutralization with aq ammonia, the solution was passed through a column of Amberlite CG-50 (NH₄⁺, 100 ml). The column was washed with H₂O (200 ml) and eluted with 1.5% aq ammonia (1,500 ml). Fractions of 11 ml were collected.

A pool of fractions 9 and 10 showing Rm 2.00 (HVPE) and Rf 0.19 (TLC) gave D- β -lysine^{1,2)} (16.7 mg); FAB-MS (positive) m/z 147 (M+H)⁺.

Fractions 18~25 showing Rm 2.10 and Rf 0.35 were concentrated to obtain the cyclized compound (48.9 mg) as a colorless hygroscopic powder; $[\alpha]_D^{24} - 58^{\circ} (c \ 1.0, H_2O)$; FAB-MS (positive) m/z 158 (M + H)⁺; IR ν_{max} (KBr) 3400, 3300, 2970, 1655, 1585, 1505, 1405, 1340, 1160, 830, 730; ¹H NMR (D₂O, pD 6.0) δ 1.60 (2H, m, 4-H₂), 1.77 (2H, m, 5-H₂), 2.12 (1H, dd, J = 10.6, 16 Hz, 2-H), 2.48 (1H, dd, J = 5.3, 16 Hz, 2-H), 3.04 (3H, m, 3-H, 6-H₂), 4.25 (2H, ABq, J = 12.8 Hz, 1'-H₂); ¹H NMR (pyridine- $d_5 - D_2O$, 1:1) δ 1.78 (2H, m, 4-H₂), 2.09 (2H, m, 5-H₂), 2.32 (1H, dd, J = 11, 18 Hz, 2-H), 2.61 (1H, dd, J = 4.4, 18 Hz, 2-H), 2.97 (1H, m, 3-H), 3.36 (2H, m, 6-H₂), 4.38 (1H, d, J = 12 Hz, 1'-H), 4.56 (1H, d, J = 12 Hz, 1'-H); ¹³C NMR (D₂O, pD 6.0) δ 174.1 (C-1), 57.0 (C-1'), 51.7 (C-3), 40.3 (C-6), 37.1 (C-2), 32.4 (C-4), 24.2 (C-5).

The pool of fractions $50 \sim 62$ showing Rm 2.50 and Rf 0.21 led to the recovery of bellenamine (12.8 mg).

The pool of fractions 70 ~ 94 showing Rm 2.24 and Rf 0.22 gave D- β -lysinamide (68.9 mg) as a colorless powder; MP 89 ~ 93°C (dec); $[\alpha]_D^{25} - 3.8^{\circ}$ (c 0.5, H₂O); FAB-MS (positive) m/z 146 (M+H)⁺; IR ν_{max} (KBr) 3410, 3210, 2960, 1680, 1640, 1590, 1490, 1390, 1320, 1270, 1205, 1180, 1170, 830, 730; ¹H NMR (D₂O, pD 4.0) δ 1.80 (4H, m, 4-H₂, 5-H₂), 2.65 (1H, dd, J=7.7, 16.8 Hz, 2-H), 2.77 (1H, dd, J=5.2, 16.8 Hz, 2-H), 3.05 (2H, m, 6-H₂), 3.68 (1H, m, 3-H); ¹³C NMR (D₂O, pD 4.0) δ 175.4 (C-1), 49.2 (C-3), 39.9 (C-6), 36.8 (C-2), 30.0 (C-4), 23.8 (C-5).

Culture with Stable Isotope Labeled Compounds

Spores of *S. nashvillensis* MD743-GF4 on an ISP-4 agar slant were inoculated into a synthetic medium (110 ml, adjusted to pH 7.4 with $1 \times \text{NaOH}$) containing D-galactose 2.0%, dextrin 2.0%, $[^{15}\text{NH}_4]_2\text{SO}_4$ (98% enrichment, Sigma Chemical Co., U.S.A.) 0.2% and CaCO₃ 0.2% in a 500-ml baffled Erlenmeyer flask and cultured at 28°C on a rotatory shaker (180 rpm). Three days later, 43 mg of L-[1-¹³C]lysine monohydrochloride (99% enrichment, Commissariat à L'Energie Atomique, France through Nacalai Tesque, Japan) was added to each flask and the culture was continued for 9 days. The culture broth in 7 flasks was filtered to yield 710 ml of the filtrate (pH 6.4).

Isolation of [1-¹³C, Amide, 1'-¹⁵N₂]bellenamine

The broth filtrate (710 ml) was passed through a column of Amberlite CG-50 (NH₄⁺, 40 ml). After washing with H₂O (150 ml), the column was eluted with 1.5% aq ammonia (500 ml) and fractions of 5 ml were collected. Fractions $8 \sim 10$ showing Rm 1.49 were concentrated to recover L-[1⁻¹³C]lysine (48.7 mg). The pool of fractions $20 \sim 39$ showing Rm 2.50 gave the ¹³C and ¹⁵N labeled bellenamine (26.3 mg). ¹H NMR (D₂O, pD 4.0) δ 1.80 (4H, m, 4-H₂, 5-H₂), 2.72 (1H, ddd, $J=5.8^*$, 8.2, 16.8 Hz, 2-H), 2.85 (1H, ddd, J=4.9, 6.0*, 16.8 Hz, 2-H), 3.05 (2H, m, 6-H₂), 3.73 (1H, m, 3-H), 4.53 (2H, m, 1'-H₂). (* showed couplings with ¹³C.) The ¹³C and ¹⁵N NMR spectra are shown in Tables 2 and 3, respectively. Enrichment ratio of 1-¹³C was calculated to be 85% from intensities of ¹³C-¹³C coupling peaks (¹J_{CC}) at 2-¹³C.

Mild Acid Hydrolysis of [1-13C, Amide, 1'-15N2] bellenamine

The ¹³C and ¹⁵N labeled bellenamine (26.3 mg) was hydrolyzed by the similar condition mentioned above. By column chromatography of Amberlite CG-50 (NH₄⁺, 30 ml), the following labeled compounds were isolated.

D-[1-¹³C] β -Lysine (0.8 mg), ¹H NMR (D₂O, pD 4.0) δ 1.80 (4H, m, 4-H₂, 5-H₂), 2.61 (1H, ddd, $J = 6.8^{*}, 7.8, 17.1$ Hz, 2-H), 2.73 (1H, ddd, $J = 4.9, 6.8^{*}, 17.1$ Hz, 2-H), 3.06 (2H, m, 6-H₂), 3.63 (1H, m, 3-H).

1929

[1-¹³C, *Amide*-¹⁵N]cyclized bellenamine: 8.4 mg. ¹H NMR (D₂O, pD 6.0) δ 1.59 (2H, m, 4-H₂), 1.78 (2H, m, 5-H₂), 2.12 (1H, ddd, J=6.6*, 10.6, 17.5 Hz, 2-H), 2.48 (1H, ddd, J=4.9, 7.5*, 17.5 Hz, 2-H), 3.04 (3H, m, 3-H, 6-H₂), 4.20 (1H, dd, J=<1**, 12 Hz, 1'-H), 4.25 (1H, dd, J=3.6**, 12 Hz, 1'-H).

 $[1-^{13}C, Amide, 1'-^{15}N_2]$ bellenamine: 3.2 mg were recovered.

D-[1-¹³C, Amide-¹⁵N] β -lysinamide: 10.3 mg. ¹H NMR (D₂O, pD 4.0) δ 1.82 (4H, m, 4-H₂, 5-H₂), 2.68 (1H, ddd, J=6.1*, 7.9, 16.5 Hz, 2-H), 2.80 (1H, ddd, J=5.2, 5.2*, 16.5 Hz, 2-H), 3.08 (2H, m, 6-H₂), 3.70 (1H, m, 3-H). (* and ** showed couplings with ¹³C and ¹⁵N, respectively.)

The ¹³C and ¹⁵N NMR spectra of stable isotope labeled compounds are shown in Tables 2 and 3, respectively.

Acknowledgment

The authors thank Professor YASUO SUZUKI, University of Shizuoka, for his kind suggestion in performing this work.

References

- IKEDA, Y.; S. KONDO, D. IKEDA, K. YOKOSE, H. FURUTANI, T. IKEDA, M. HAMADA, M. ISHIZUKA, T. TAKEUCHI & H. UMEZAWA: D-β-Lysylmethanediamine, a new biogenetic amine produced by a *Streptomyces*. J. Antibiotics 39: 476~478, 1986
- 2) IKEDA, Y.; D. IKEDA & S. KONDO: Total syntheses of bellenamine and its isomers. J. Antibiotics 45: 1677 ~ 1680, 1992
- 3) IKEDA, R.; H. HOSHINO, Y. IKEDA, S. KONDO & T. TAKEUCHI: Activity and mechanism of bellenamine, a new anti-HIV agent. Abstracts of 40th Annual Meeting of the Society of Japanese Virologists, p. 178, Kobe, Oct. 30, 1992
- IKEDA, Y.; S. GOMI, M. HAMADA, S. KONDO & T. TAKEUCHI: Production of bellenamine and new metabolites in a synthetic medium. J. Antibiotics 45: 1763~1766, 1992
- IKEDA, Y.; H. NAGANAWA, S. KONDO & T. TAKEUCHI: Biosynthesis of bellenamine by Streptomyces using stable isotope labeled compounds. J. Antibiotics 45: 1919~1924, 1992
- UMEZAWA, H. & S. KONDO: Electrophoresis of antibiotics. In Methods in Enzymology. Vol. 43. Antibiotics. Ed., J. H. HASH, pp. 279~290, Academic Press, 1975